

Dark Photons at the EIC

Ross Corliss

Outline

- Motivation
- Channels
- Kinematics
- Monte Carlo Studies
- Ongoing Work

Why a Dark Photon?

- Dark Matter Decay Mechanism?
- Anomalies:

• Because we can write it:

$$L \supset \frac{\epsilon}{2} F_{\mu\nu} F'^{\mu\nu}$$

8Be/4He Anomalies

- Signal conflicts with simple charge-coupling model
- Allow particles to have independent couplings:
 - Simple Lagrangian term modified
 - Pion couplings suppressed
- Ratio of proton and neutron couplings no less 'natural' than for Z

Existing Limits

 In simple Kinetic Mixing Model:

$$\alpha_D = \epsilon^2 \alpha_{EM}$$

- Want to explore the parameter space with purely leptonic couplings as well!
- (But keep the notation and name.)

A' Channels

- Production:
 - ISR (A'-strahlung from e- beam) $(m_A < \sqrt{s})$
 - Decay (on-shell A' replaces photon in decay chain) (m_A < parent)
- Final States:
 - e+ e- pair (m_A>2m_e)
 - μ + μ pair (m_A >2 m_μ , cleaner signal)
 - q qbar pair (messier, harder)
 - invisible (much harder)
 - displaced vertices (cleaner, much harder)

Fixed-Target Kinematics

- A' carries large fraction of beam energy -- at large boost, decay products go forward.
- Recoil proton carries little energy

EIC Kinematics

 at 20GeV x 250GeV, CM Boost substantially opens the angle between decay leptons:

EIC Kinematics

Lab frame symmetric η for A' decay

charged particle tagging

5 GeV e- on 250 GeV P 20 GeV er on 50 GeV P Lab frame symmetric momentum for A' decay

 For ep, handbook detector reaches to O(100MeV)

 10^{3}

mA [MeV]

Generating Events

- Madgraph4.4 configuration:
 - custom (A',e,e) vertex
 - ignores proton structure
 - ~10TeV e- on fixed proton target, boost to lab frame after generation (20x250 setting)
 - Gen-level cut at 1°< θ_e <179° wrt e- direction in lab (0.001°< θ_e <30° wrt e- beam in p-rest)
 - generate leading order:
 - Signal: ep->epA'->epee for various m_A
 - Irred. Bg: ep->epγ*->epee

MC Kinematics

- Signal e+e- pairs track naive kinematics well
- Spectator e- is spread more broadly

10°

mass [MeV)

Reach Calculation

 Significance is signal size compared to fluctuation in irreducible background:

$$S = \frac{\sigma_A L}{\sqrt{\sigma_{QED} L}}$$

Signal xs scales with coupling (ε²):

$$S = \sigma_{A0} \frac{\alpha_D}{\alpha_{D0}} \sqrt{\frac{L}{\sigma_{QED}}}$$

Reach defined by extrinsic factors and Sig/√Bg:

$$\alpha_D = S \frac{\alpha_{D0}}{\sqrt{L}} \frac{\sqrt{\sigma_{QED}}}{\sigma_{A0}}$$

Optimizing mass window

- Integrate yield in Signal and Bg samples in window of varying size, find local maximum (trivial for unsmeared MC)
- Inv Mass from e+ and spectator edoes not have a peak

MC Reach

- Repeat FOM calculation for every sample, propagate finite statistics uncertainties
- Arbitrary settings:
 Significance = 5 (Discovery!)
 L=39fb⁻¹ (6 months of running at 25x250 design lumi)

Detector Needs

- Mass resolution -- maximize FOM. Intrinsic width very narrow, so window dominated by detector.
- Charge sign reco/PID -- reduce combinatorics, fewer wrong-pairs to deal with
- Coverage -- higher (-) eta accesses lower masses

Converting Events

- Parse MadGraph trees into DJANGOH-like text files
- Patch missing variables with synchronized tree
- Convert back into MG tree for parallel analysis

Signal in Handbook Detector

Next Steps

- Upgrade MC generator:
 - muons, more efficient cuts, heavier ion beam
 - hadronic couplings, proton structure
- (Gently) Improve algorithm
 - shape-fitting and cut optimization
 - same-sign pairs for in-situ background
 - displaced vertices?
- Improve handling of more realistic detector
 - tracing lost pid and systematic shifts
 - combinatoric/mis-ID'd backgrounds

Summary

- Multiple probes desired to explore A' generalized parameter space
- Multiple approaches available at EIC:
 - ISR leptons ~500MeV<mA<~50GeV from kinematics
 - Dalitz decays mA<parent
 - hadronic decays?
- Boosted CM helps in ISR scenario
- Benefits from pid, charge, and resolution -especially in electron-going direction

EIC Kinematics

mA [MeV]